Product Description

Applicable Industries

Automobile, motor, electrical appliance, machinery, furniture, toy, printer, engineering machinery, sewing machine, packaging
machinery, printing machinery, medical equipment, stepping motor, speed reducer, pressure rotor, fitness and sports equipment,
food and chemical machinery, machine tool, textile machinery, fitness equipment, electronic products, etc

Bore Size

10mm – 360mm

Model Number

51120

Precision Rating

P0 P6 P5 P4 P2

Seals Type

Not sealed

Number of Row

Single Row

Place of Origin

China

Company Profile

 

In order to meet the needs of the masses of customers and improve the market competitiveness of our company,
we can provide OEM service according to our customers′ Needs. We have gained ISO9001 certificate, CE certificate,
GOST certificate and SGS certificate. Our target is to carry out the strategic investment along with the development
of market and need of new products. With our strategic, excellent products, top technology and outstanding service,
we sincerely expect cooperation with more customers and friends for a better future. Our main products include
spherical roller bearing, deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, needle roller
bearings, ball bearing units, water pump bearings, automobile bearing, linear motion bearing, oil-less bearings,
bush and self-lubricating bearings, and non-standard bearings. Also, we supply bearings to our domestic peeling
machine factory and the machine exported to India, Malaysia and Russia, no any complaint from customer until now.

“zero defect, zero complaints” as the quality objective.

FAQ

Q: Are you trading company or manufacturer ?

A: We are a trading company specializing in exporting bearings.

Q: How long is your delivery time?

A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the 

goods are not in stock, it is according to quantity.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge

Q.You provide free consultation service?

Yes, before, during and after order, anytime.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Product Name: Thrust Bearing
Characteristic: High Precision
Advantage: Large Bearing Capacity
Holder: Copper and Iron Retainers
Quality: High Quality
Rolling Body: Roller Bearings
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

tapered roller bearing

How do Tapered Roller Bearings Contribute to the Efficiency of Automotive Wheel Hubs?

Tapered roller bearings play a crucial role in enhancing the efficiency and performance of automotive wheel hubs. They are specifically designed to handle both radial and axial loads, making them ideal for supporting the weight of the vehicle, providing smooth rotation, and ensuring safe and reliable operation. Here’s how tapered roller bearings contribute to the efficiency of automotive wheel hubs:

  • Load Distribution:

Automotive wheel hubs experience a combination of radial and axial loads due to the vehicle’s weight, acceleration, braking, and cornering forces. Tapered roller bearings efficiently distribute these loads, preventing localized stress concentrations and ensuring uniform load sharing across the bearing components.

  • Smooth Rotation:

Tapered roller bearings enable smooth and low-friction rotation of the wheel hub around the axle. This minimizes rolling resistance, leading to improved fuel efficiency and reduced energy consumption.

  • Axial Load Handling:

During cornering and steering maneuvers, automotive wheel hubs encounter axial loads. Tapered roller bearings are designed to handle these axial loads without compromising their ability to carry radial loads, ensuring stable and controlled vehicle handling.

  • Reduced Friction and Wear:

The tapered geometry and precision design of the rollers and raceways in these bearings minimize friction between components. This results in reduced wear, lower heat generation, and extended bearing life, contributing to long-term efficiency.

  • Reliable Performance:

Tapered roller bearings are known for their durability and resistance to wear and fatigue. They maintain their performance even under harsh operating conditions, ensuring consistent and reliable wheel hub operation.

  • Enhanced Safety:

The efficiency of tapered roller bearings directly impacts the vehicle’s stability and control. Properly functioning bearings prevent issues like wheel wobbling, uneven tire wear, and compromised steering, contributing to safe driving conditions.

  • Easy Replacement:

When maintenance or replacement is required, tapered roller bearings can be easily installed and removed. This simplifies the servicing process and reduces vehicle downtime.

  • Reduced Maintenance Costs:

The long service life and reliability of tapered roller bearings minimize the need for frequent maintenance and replacement, reducing overall maintenance costs for the vehicle owner.

  • Optimized Performance:

Efficient wheel hubs with properly functioning tapered roller bearings lead to improved vehicle performance, including better acceleration, braking, handling, and overall drivability.

Overall, tapered roller bearings contribute to the efficiency and effectiveness of automotive wheel hubs, enhancing vehicle performance, safety, and longevity.

cylindrical roller bearing

How do cylindrical roller bearings perform in high-speed or high-temperature environments?

Cylindrical roller bearings are designed to perform reliably in high-speed or high-temperature environments, although their performance may be influenced by various factors. Let’s explore how cylindrical roller bearings perform under these conditions:

  • High-Speed Environments:

In high-speed environments, cylindrical roller bearings are subjected to increased centrifugal forces and higher operating temperatures. To accommodate these conditions, several design features are employed:

  • Cage Design:

Cylindrical roller bearings intended for high-speed applications often feature optimized cage designs. The cage, or retainer, holds the cylindrical rollers in position and prevents excessive friction and heat generation. Cages made of lightweight materials such as phenolic resin or engineered plastics help reduce inertia and minimize cage wear at high speeds.

  • Roller and Raceway Geometry:

The roller and raceway profiles are designed to minimize sliding friction and ensure proper roller guidance. Special attention is given to the surface finish and precision of these components to reduce friction and minimize heat generation. Additionally, high-speed cylindrical roller bearings may have specific modifications, such as optimized roller end profiles and surface coatings, to further enhance their performance in high-speed applications.

  • Lubrication:

Proper lubrication is crucial in high-speed environments to reduce friction, dissipate heat, and prevent premature wear. High-speed cylindrical roller bearings often require lubricants with specific properties, such as low viscosity and excellent thermal stability, to ensure effective lubrication under high-speed conditions. Lubrication methods, such as oil-air lubrication or oil mist lubrication, may be employed to provide sufficient lubricant supply to the bearing at high speeds.

  • High-Temperature Environments:

When operating in high-temperature environments, cylindrical roller bearings face challenges related to elevated temperatures and potential thermal expansion. To address these challenges, the following considerations are taken into account:

  • Bearing Materials:

High-temperature cylindrical roller bearings are often made from heat-resistant materials that can withstand elevated temperatures without compromising their mechanical properties. Common materials include high-temperature steels, heat-resistant alloys, or ceramics. These materials offer improved dimensional stability and resistance to thermal expansion, ensuring the bearing’s performance and longevity.

  • Lubrication:

Proper lubrication becomes even more critical in high-temperature environments. Lubricants with high-temperature stability, such as synthetic oils or greases specifically formulated for high temperatures, are used to maintain adequate lubrication properties and prevent premature lubricant degradation. Lubrication intervals may need to be adjusted to ensure sufficient lubricant replenishment under high-temperature conditions.

  • Clearance and Preload:

In high-temperature environments, the bearing’s internal clearance or preload may be adjusted to compensate for thermal expansion. Proper clearance or preload selection helps maintain the desired operating conditions and prevents excessive bearing play or preload loss due to thermal effects.

It’s important to note that the specific performance of cylindrical roller bearings in high-speed or high-temperature environments can vary depending on factors such as the bearing size, design, operating conditions, and the presence of additional cooling or heat dissipation measures. Consulting bearing manufacturers’ recommendations and considering the application requirements are crucial for selecting the appropriate cylindrical roller bearings for high-speed or high-temperature applications.

cylindrical roller bearing

How do cylindrical roller bearings contribute to reduced friction and heat generation?

Cylindrical roller bearings play a crucial role in reducing friction and minimizing heat generation in various applications. Let’s explore how these bearings contribute to these important factors:

  • Rolling Motion:

Cylindrical roller bearings facilitate rolling motion between the inner and outer rings, as well as the cylindrical rollers. This rolling motion significantly reduces friction compared to sliding or rubbing contact. Instead of sliding against each other, the rolling elements roll smoothly over the raceways, resulting in lower frictional forces. The reduced friction helps to minimize energy loss and heat generation within the bearing.

  • Precision Manufacturing:

Cylindrical roller bearings are precision-engineered components manufactured to tight tolerances. The surfaces of the rollers and raceways are carefully finished to ensure smooth and precise contact. The high precision in the bearing’s construction minimizes irregularities and imperfections that could cause increased friction and heat generation. By maintaining close tolerances, cylindrical roller bearings optimize performance and reduce frictional losses.

  • Lubrication:

Proper lubrication is essential for reducing friction and heat in cylindrical roller bearings. Lubricants create a thin film between the rolling elements and raceways, separating them and minimizing direct metal-to-metal contact. This lubricant film acts as a protective barrier, reducing friction and dissipating heat generated during operation. Adequate lubrication also helps to prevent wear, corrosion, and premature failure of the bearing.

  • Cage Design:

Cylindrical roller bearings often incorporate a cage or separator that spaces and guides the rollers. The cage retains the individual rollers in their proper positions, preventing them from contacting and rubbing against each other. This design feature not only maintains the integrity of the rolling elements but also reduces friction and heat generation by minimizing contact between adjacent rollers. The cage also helps to maintain proper lubricant distribution throughout the bearing.

  • Efficient Load Distribution:

Cylindrical roller bearings have a line contact between the rollers and raceways, which enables efficient load distribution. The cylindrical shape of the rollers allows them to bear loads along their length, spreading the load over a larger surface area compared to other bearing types. This even distribution of the load reduces localized stresses and friction at specific contact points, resulting in reduced heat generation.

  • Heat Dissipation:

Cylindrical roller bearings are typically designed with features that facilitate heat dissipation. They may incorporate special heat-treated components, such as rings and rollers, that have enhanced heat resistance properties. Additionally, the bearing design may include features such as grooves, holes, or special surface coatings to improve heat dissipation and prevent the buildup of excessive temperatures within the bearing assembly.

By minimizing friction and heat generation, cylindrical roller bearings contribute to improved efficiency, reduced energy consumption, and extended bearing life. These factors are crucial in various applications where the performance, reliability, and longevity of rotating machinery are critical considerations.

China high quality Cylindrical Roller Machine Tool Spindle Bearing 89180m 9549180 480*48 Bgsb358469A 562616   wheel bearingChina high quality Cylindrical Roller Machine Tool Spindle Bearing 89180m 9549180 480*48 Bgsb358469A 562616   wheel bearing
editor by CX 2024-04-25